MATHICSE Technical Report : Analytical and numerical study of a modified cell problem for the numerical homogenization of multiscale random fields
Related publications (43)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The numerical solution of partial differential equations (PDEs) depending on para- metrized or random input data is computationally intensive. Reduced order modeling techniques, such as the reduced basis methods, have been developed to alleviate this compu ...
We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a ...
This paper studies the mismatched decoding problem for binary-input discrete memoryless channels. An example is provided for which an achievable rate based on superposition coding exceeds the Csiszar-Korner-Hui rate, thus providing a counter-example to a p ...
Institute of Electrical and Electronics Engineers2015
This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly aff ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
In this project we numerically simulate electrophysiological models for cardiac applications by means of Isogeometric Analysis. Specifically, we aim at understanding the advantages of using high order continuous NURBS (Non-UniformRational B-Splines) basis ...
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely ...
In this work we develop an adaptive and reduced computational algorithm based on dimension-adaptive sparse grid approximation and reduced basis methods for solving highdimensional uncertainty quantification (UQ) problems. In order to tackle the computation ...
This is a survey for the 2015 AMS Summer Institute on Algebraic Geometry about the Frobenius type techniques recently used extensively in positive characteristic algebraic geometry. We first explain the basic ideas through simple versions of the fundamenta ...
In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely ...