**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# A Covariance Formula For Topological Events Of Smooth Gaussian Fields

Abstract

We derive a covariance formula for the class of 'topological events' of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for example, (i) crossing events for level or excursion sets, (ii) events measurable with respect to the number of connected components of level or excursion sets of a given diffeomorphism class and (iii) persistence events. As an application of the covariance formula, we derive strong mixing bounds for topological events, as well as lower concentration inequalities for additive topological functionals (e.g., the number of connected components) of the level sets that satisfy a law of large numbers. The covariance formula also gives an alternate justification of the Harris criterion, which conjecturally describes the boundary of the percolation university class for level sets of stationary Gaussian fields. Our work is inspired by (Ann. Inst. Henri Poincare Probab. Stat. 55 (2019) 1679-1711), in which a correlation inequality was derived for certain topological events on the plane, as well as by (Asymptotic Methods in the Theory of Gaussian Processes and Fields (1996) Amer. Math. Soc.), in which a similar covariance formula was established for finite-dimensional Gaussian vectors.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (40)

Related publications (33)

Gaussian process

In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e. every finite linear combination of them is normally distributed. The distribution of a Gaussian process is the joint distribution of all those (infinitely many) random variables, and as such, it is a distribution over functions with a continuous domain, e.g.

Distance correlation

In statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.

Algorithms for calculating variance

Algorithms for calculating variance play a major role in computational statistics. A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

Daniel Kuhn, Yves Rychener, Viet Anh Nguyen

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...

2024We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of luminous red galaxies (LRGs) data collected during the initial 2 months of operat ...

Victor Panaretos, Kartik Waghmare

We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Omega of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Omega call ...