Effect of solute-solute interactions on strengthening of random alloys from dilute to high entropy alloys
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The yield strengths of High Entropy Alloys have recently been correlated with measured or computed picometer-scale atomic distortions. Here, the root mean square microdistortion in a multicomponent alloy is shown to be nearly proportional to the misfit-vol ...
Large scale 3D atomistic simulations are performed to study the interaction between a curved dislocation with a dominant screw character and a Coherent Twin Boundary (CTB). Three FCC metals (Al, Cu and Ni) are addressed using 6 embedded-atom method (EAM) p ...
The mechanical strength of metals depends on their resistance against various microscopic
deformation processes. In ductile metals, the most important process is shearing of the crystal
lattice by dislocations. One of the fundamental aspects of dislocation ...
Solute accelerated cross-slip of pyramidal < c + a > screw dislocations has recently been recognized as a crucial mechanism in enhancing the ductility of solid-solution Mg alloys. In pure Mg, cross-slip is ineffective owing to the energy difference between ...
The mechanical properties due to solid solution strengthening are explored within the single phase face-centered cubic (fcc) domain of the Co-Cr-Fe-Mn Ni high entropy alloy (HEA) system. This is achieved by combining an efficient and reproducible metallurg ...
Age hardening induced by the formation of (semi)-coherent precipitate phases is crucial for the processing and final properties of the widely used Al-6000 alloys despite the early stages of precipitation are still far from being fully understood. This cruc ...
Strengthening, i.e. increased stress required to move a dislocation, in dilute or complex alloys arises from the totality of the interaction energies between the solutes and an individual dislocation. Prevailing theories for strengthening in bcc alloys con ...
IMPACT STATEMENT Experiments and theory are highlighting chemical ordering in high-entropy alloys (HEAs) as important for mechanical properties but the high strength in CoCrFeNiPd is predicted here to be achievable in the random alloy due to the large misf ...
The industrial applications of Mg, the lightest structural metal, and abundant in Earth's crust, are hampered by its low intrinsic ductility and low fracture toughness at room temperature which is attributed to the underlying less symmetric and plastically ...
Random alloys are multicomponent systems where the atomic type on each lattice site is independent of the atom types on any other lattice site. The fluctuations in local atomic configurations inherent to the random alloy prevents the accurate application o ...