Publication

Solidity without inhomogeneity: perfectly homogeneous, weakly coupled, UV-complete solids

Angelo Esposito
2020
Journal paper
Abstract

Solid-like behavior at low energies and long distances is usually associated with the spontaneous breaking of spatial translations at microscopic scales, as in the case of a lattice of atoms. We exhibit three quantum field theories that are renormalizable, Poincare invariant, and weakly coupled, and that admit states that on the one hand are perfectly homogeneous down to arbitrarily short scales, and on the other hand have the same infrared dynamics as isotropic solids. All three examples presented here lead to the same peculiar solid at low energies, featuring very constrained interactions and transverse phonons that always propagate at the speed of light. In particular, they violate the well known cL2>43cT2 bound, thus showing that it is possible to have a healthy renormalizable theory that at low energies exhibits a negative bulk modulus (we discuss how the associated instabilities are absent in the presence of suitable boundary conditions). We do not know whether such peculiarities are unavoidable features of large scale solid-like behavior in the absence of short scale inhomogeneities, or whether they simply reflect the limits of our imagination.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.