Preimage attackIn cryptography, a preimage attack on cryptographic hash functions tries to find a message that has a specific hash value. A cryptographic hash function should resist attacks on its (set of possible inputs). In the context of attack, there are two types of preimage resistance: preimage resistance: for essentially all pre-specified outputs, it is computationally infeasible to find any input that hashes to that output; i.e., given , it is difficult to find an such that () = .
Substitution cipherIn cryptography, a substitution cipher is a method of encrypting in which units of plaintext are replaced with the ciphertext, in a defined manner, with the help of a key; the "units" may be single letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. The receiver deciphers the text by performing the inverse substitution process to extract the original message. Substitution ciphers can be compared with transposition ciphers.
CiphertextIn cryptography, ciphertext or cyphertext is the result of encryption performed on plaintext using an algorithm, called a cipher. Ciphertext is also known as encrypted or encoded information because it contains a form of the original plaintext that is unreadable by a human or computer without the proper cipher to decrypt it. This process prevents the loss of sensitive information via hacking. Decryption, the inverse of encryption, is the process of turning ciphertext into readable plaintext.
Frequency analysisIn cryptanalysis, frequency analysis (also known as counting letters) is the study of the frequency of letters or groups of letters in a ciphertext. The method is used as an aid to breaking classical ciphers. Frequency analysis is based on the fact that, in any given stretch of written language, certain letters and combinations of letters occur with varying frequencies. Moreover, there is a characteristic distribution of letters that is roughly the same for almost all samples of that language.
Ciphertext-only attackIn cryptography, a ciphertext-only attack (COA) or known ciphertext attack is an attack model for cryptanalysis where the attacker is assumed to have access only to a set of ciphertexts. While the attacker has no channel providing access to the plaintext prior to encryption, in all practical ciphertext-only attacks, the attacker still has some knowledge of the plaintext. For instance, the attacker might know the language in which the plaintext is written or the expected statistical distribution of characters in the plaintext.
Birthday attackA birthday attack is a type of cryptographic attack that exploits the mathematics behind the birthday problem in probability theory. This attack can be used to abuse communication between two or more parties. The attack depends on the higher likelihood of collisions found between random attack attempts and a fixed degree of permutations (pigeonholes). With a birthday attack, it is possible to find a collision of a hash function in , with being the classical security.
Initialization vectorIn cryptography, an initialization vector (IV) or starting variable is an input to a cryptographic primitive being used to provide the initial state. The IV is typically required to be random or pseudorandom, but sometimes an IV only needs to be unpredictable or unique. Randomization is crucial for some encryption schemes to achieve semantic security, a property whereby repeated usage of the scheme under the same key does not allow an attacker to infer relationships between (potentially similar) segments of the encrypted message.
Impossible differential cryptanalysisIn cryptography, impossible differential cryptanalysis is a form of differential cryptanalysis for block ciphers. While ordinary differential cryptanalysis tracks differences that propagate through the cipher with greater than expected probability, impossible differential cryptanalysis exploits differences that are impossible (having probability 0) at some intermediate state of the cipher algorithm. Lars Knudsen appears to be the first to use a form of this attack, in the 1998 paper where he introduced his AES candidate, DEAL.
Data Encryption StandardThe Data Encryption Standard (DES ˌdiːˌiːˈɛs,_dɛz) is a symmetric-key algorithm for the encryption of digital data. Although its short key length of 56 bits makes it too insecure for modern applications, it has been highly influential in the advancement of cryptography. Developed in the early 1970s at IBM and based on an earlier design by Horst Feistel, the algorithm was submitted to the National Bureau of Standards (NBS) following the agency's invitation to propose a candidate for the protection of sensitive, unclassified electronic government data.
Replay attackA replay attack (also known as a repeat attack or playback attack) is a form of network attack in which valid data transmission is maliciously or fraudulently repeated or delayed. This is carried out either by the originator or by an adversary who intercepts the data and re-transmits it, possibly as part of a spoofing attack by IP packet substitution. This is one of the lower-tier versions of a man-in-the-middle attack. Replay attacks are usually passive in nature.