A meta-learning approach for genomic survival analysis
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Breast carcinoma is the most prevalent cancer among women globally. It has variable clinical courses depending on the stage and clinical-biological features. This case report describes a 56-year-old female with invasive breast cancer without estrogen or pr ...
Objectives To evaluate the performance of automatic deep learning (DL) algorithm for size, mass, and volume measurements in predicting prognosis of lung adenocarcinoma (LUAD) and compared with manual measurements. Methods A total of 542 patients with clini ...
Deep-learning-based digital twins (DDT) are a promising tool for data-driven system health management because they can be trained directly on operational data. A major challenge for efficient training however is that industrial datasets remain unlabeled. T ...
The present invention provides methods for detecting cancer as well as agents and compositions for treating cancer by modulating the expression and/or activity of one or more i) KRAB-containing zinc finger protein (KZFP), ii) mRNA encoding a KZFP, and/or i ...
Cancer is the second leading cause of death worldwide. Cancer develops through multiple hallmark functions including apoptosis evasion, unlimited replicative potential, metastasis, and immune avoidance. Over the past few decades, researchers have reported ...
Distribution shift is omnipresent in geographic data, where various climatic and cultural factors lead to different representations across the globe. We aim to adapt dynamically to unseen data distributions with model-agnostic meta-learning, where data sa ...
Learning to predict accurately from a few data samples is a central challenge in modern data-hungry machine learning. On natural images, human vision typically outperforms deep learning approaches on few-shot learning. However, we hypothesize that aerial a ...
Aims: Understanding the correlations between underlying medical and personal characteristics of a patient with cancer and the risk of lung metastasis may improve clinical management and outcomes. We used machine learning methodologies to predict the risk o ...
2023
, ,
The objective of meta-learning is to exploit knowledge obtained from observed tasks to improve adaptation to unseen tasks. Meta-learners are able to generalize better when they are trained with a larger number of observed tasks and with a larger amount of ...
The genomes of many human CRCs have been sequenced, revealing a large number of genetic alterations. However, the molecular mechanisms underlying the accumulation of these alterations are still being debated. In this study, we examined colorectal tumours ...