Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The study presented herein adopts a new vision of the processes involved in carbonate mineralization induced by MICP from an electrochemical and crystal growth perspective. More precisely a specific line of focus refers to the species involved in the bio-chemical reactions and especially their net particle charge. By altering electro-chemical conditions via the application of direct electric currents, we observe distinctive trends related to: (i) overall reaction efficiency; (ii) carbonate mineralization/dissolution and (iii) spatial distribution of precipitates. The study introduces the concept of EA-MICP which stands for Electrically Assisted MICP as a means of improving the efficiency of soil bio-consolidation and overcoming various challenges which were previously reported in conventional MICP-based works. Resultsreveal both the detrimental and highly beneficial role that electric currents can hold in the complex, reactive and transport processes involved. An interesting finding is the “doped” morphology of calcite crystals, precipitated under electric fields, validated by microstructural observations.
Marcos Rubinstein, Mohammad Azadifar, Farhad Rachidi-Haeri, Carlo Alberto Nucci, Qi Li