Measuring the Impact of Model and Input Heterogeneity in Personalized Federated Learning
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This doctoral thesis focuses on a particular aspect of architectural learning as embodied cognition by studying, from a multidisciplinary approach, the creative processes and design actions that accompany the conception and construction of space. Due to th ...
USP- Universidad San Pablo CEU, Madrid, Spain.2023
Representing single or multi-layered mixed-phase clouds (MPCs) accurately in global climate models (GCMs) is critical for capturing climate sensitivity and Arctic amplification. Ice multiplication, or secondary ice production (SIP), can increase the ice cr ...
This study presents a self-supervised Bayesian Neural Network (BNN) framework using air-borne Acoustic Emission (AE) to identify different Laser Powder Bed Fusion (LPBF) process regimes such as Lack of Fusion, conduction mode, and keyhole without ground-tr ...
Blood pressure (BP) is a crucial indicator of cardiovascular health. Hypertension is a common life-threatening condition and a key factor of cardiovascular diseases (CVDs). Identifying abnormal BP fluctuations can allow for early detection and management o ...
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decentralized setting, in which workers commu ...
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
We propose ordering-based approaches for learning the maximal ancestral graph (MAG) of a structural equation model (SEM) up to its Markov equivalence class (MEC) in the presence of unobserved variables. Existing ordering-based methods in the literature rec ...
Association for the Advancement of Artificial Intelligence (AAAI)2023
Flipped classrooms, in which students engage with the materials before the class and use face-to-face time for more interactive and personalized learning activities, have become increasingly popular in recent years. While this approach has the potential to ...
Nowadays, the integration of home automation systems with smart thermostats is a common trend, designed to enhance resident comfort and conserve energy. The introduction of smart thermostats that can run machine learning algorithms has opened the door for ...
This article reviews significant advances in networked signal and information processing (SIP), which have enabled in the last 25 years extending decision making and inference, optimization, control, and learning to the increasingly ubiquitous environments ...