Cryogenic CMOS Integrated Circuits for Scalable Readout of Silicon Quantum Computers
Related publications (169)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the same year as Einstein's annus mirabilis, English engineer and physicist John Flemming patented the first rectifying diode, which he called the "Flemming valve". Einstein's work on the photoelectric effect would change our understanding of the nature ...
Quantum processors rely on classical electronic controllers to manipulate and read out the quantum state. As the performance of the quantum processor improves, non-idealities in the classical controller can become the performance bottleneck for the whole q ...
Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions betw ...
Quantum mechanics did not only deeply transform our world view down to a philosophical level, it is also expected to be key ingredient of future so-called quantum technologies. Indeed, quantum properties of matter such as isolated single particles or entan ...
A quantum computer fundamentally comprises a quantum processor and a classical controller. The classical electronic controller is used to correct and manipulate the qubits, the core components of a quantum processor. To enable quantum computers scalable to ...
Recent developments in quantum hardware indicate that systems featuring more than 50 physical qubits are within reach. At this scale, classical simulation will no longer be feasible and there is a possibility that such quantum devices may outperform even c ...
A quantum machine may solve some complex problems that are intractable for even the most powerful classical computers. By exploiting quantum superposition and entanglement phenomena, quantum algorithms can achieve from polynomial to exponential speed up wh ...
In this paper we will present and discuss the potential of steep slope transistors to serve at cryogenic temperature: (i) the electronic design that is needed for qubit error correction and/or interfacing and (ii) to serve as ultra-sensitive charge detecto ...
The prospective of practical quantum computers has lead researchers to investigate automatic tools to program them. A quantum program is modeled as a Clifford+T quantum circuit that needs to be optimized in order to comply with quantum technology constrain ...