MATHICSE Technical Report : A probabilistic finite element method based on random meshes: Error estimators and Bayesian inverse problems
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...
Trimming consists of cutting away parts of a geometric domain, without reconstructing a global parametrization (meshing). It is a widely used operation in computer-aided design, which generates meshes that are unfitted with the described physical object. T ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
EPFL2024
, ,
Removing geometrical details from a complex domain is a classical operation in computer aided design for simulation and manufacturing. This procedure simplifies the meshing process, and it enables faster simulations with less memory requirements. But depen ...
2022
, ,
Semi-discrete optimal transport problems, which evaluate the Wasserstein distance between a discrete and a generic (possibly non-discrete) probability measure, are believed to be computationally hard. Even though such problems are ubiquitous in statistics, ...
A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, ...
Multiscale problems, such as modelling flows through porous media or predicting the mechanical properties of composite materials, are of great interest in many scientific areas. Analytical models describing these phenomena are rarely available, and one mus ...
Mathematical models involving multiple scales are essential for the description of physical systems. In particular, these models are important for the simulation of time-dependent phenomena, such as the heat flow, where the Laplacian contains mixed and ind ...
The present work deals with rational model order reduction methods based on the single-point Least-Square (LS) Padé approximation techniques introduced in Bonizzoni et al. (ESAIM Math. Model. Numer. Anal., 52(4), 1261–1284 2018, Math. Comput. 89, 1229–1257 ...