Particle-size segregation and rheology coupling in dense granular flows.
Related publications (44)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanocrystalline (NC) metals have attracted widespread interest in materials science due to their high strength compared to coarse-grained counterparts. It is well know that during uniaxial deformation, the stress-strain behaviour exhibits an extraordinary ...
In the last years, a novel typology of adhesive connections for structural glass application has emerged, known as laminated adhesive connections, which makes use of the transparent ionomer SentryGlasa (R) (SG) from Kuraray and the Transparent Structural S ...
In this study, the hot deformation behavior of an Al-1% Mg alloy with very coarse initial grain size was investigated in terms of flow stress evolution and grain refinement mechanism. The large grain size was employed to study the traditional continuous dy ...
Granular geophysical flows are composed by particles of different sizes that segregate under the action of gravity and shear-induced dilatancy. Size segregation is the physical process by which small particle percolate through gaps left by the relative mov ...
Gravity-driven granular free-surface flows (or granular avalanches) provide ideal conditions for particles to separate based on their size. This size segregation process is caused by shear-induced dilatation that allows the percolation of small particles u ...
We report on the scaling between the lift force and the velocity lag experienced by a single particle of different size in a monodisperse dense granular chute flow. The similarity of this scaling to the Saffman lift force in (micro-) fluids, suggests an in ...
Owing to the lack of a comprehensive published procedure for the design of stiffened extended shear tabs, practicing engineers usually follow design guides for unstiffened shear tabs. The results of recent laboratory experiments and numerical analyses have ...
We consider the Langevin dynamics of a many-body system of interacting particles in d dimensions, in a very general setting suitable to model several out-of-equilibrium situations, such as liquid and glass rheology, active self-propelled particles, and gla ...
The dynamic recrystallization of a Fe-Mn-Si based shape memory is studied for the first time, under constant and variable thermo-mechanical conditions. The effect of strain rate and deformation temperature on the microstructural evolution is investigated, ...
As an extension of the isotropic setting presented in the companion paper Agoritsas et al (2019 J. Phys. A: Math. Theor. 52 144002), we consider the Langevin dynamics of a many-body system of pairwise interacting particles in d dimensions, submitted to an ...