Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This work focuses on the development of a super-penalty strategy based on the L2-projection of suitable coupling terms to achieve C1-continuity between non-conforming multi-patch isogeometric Kirchhoff plates. In particular, the choice of penalty parameters is driven by the underlying perturbed saddle point problem from which the Lagrange multipliers are eliminated and is performed to guarantee the optimal accuracy of the method. Moreover, by construction, the method does not suffer from boundary locking, especially on very coarse meshes. We demonstrate the applicability of the proposed coupling algorithm to Kirchhoff plates by studying several benchmark examples discretized by non-conforming meshes. In all cases, we recover the optimal rates of convergence achievable by B-splines where we achieve a substantial gain in accuracy per degree-of-freedom compared to other choices of the penalty parameters.
,