All-Microwave Control and Dispersive Readout of Gate-Defined Quantum Dot Qubits in Circuit Quantum Electrodynamics
Related publications (40)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Quantum computing promises to revolutionize our lives, achieving unprecedented computational powers and unlocking new possibilities in drug discovery, chemical simulations and cryptography. The fundamental unit of computation of a quantum computer is the q ...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit oper ...
Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the ...
We report the experimental nondemolition measurement of coherence, predictability and concurrence on a system of two qubits. The quantum circuits proposed by De Melo et al. (Phys Rev Lett 98(25):250501, 2007) are implemented on IBM Q (superconducting circu ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
Quantum computing holds the promise to solve many of today's intractable problems. A solid-state quantum computer (QC) is generally made of an array of qubits implemented in one of many solid-state technologies and operating at deep-cryogenic temperatures ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
The energy landscape of a single electron in a triple quantum dot can be tuned such that the energy separation between ground and excited states becomes a flat function of the relevant gate voltages. These so-called sweet spots are beneficial for charge co ...
We propose a scheme for universal quantum computing based on Kramers rare-earth ions. Their nuclear spins in the presence of a Zeeman-split electronic crystal field ground state act as "passive" qubits that store quantum information. The "active" qubits ar ...
Quantum processors rely on classical electronic controllers to manipulate and read out the state of quantum bits (qubits). As the performance of the quantum processor improves, nonidealities in the classical controller can become the performance bottleneck ...