Publication

Superluminal Motion-Assisted Four-Dimensional Light-in-Flight Imaging

Abstract

Advances in high-speed imaging techniques have opened new possibilities for capturing ultrafast phenomena such as light propagation in air or through media. Capturing light in flight in three-dimensional xyt space has been reported based on various types of imaging systems, whereas reconstruction of light-in-flight information in the fourth dimension z has been a challenge. We demonstrate the four-dimensional light-in-flight imaging based on the observation of a superluminal motion captured by a new time-gated megapixel single-photon avalanche diode camera. A high-resolution light-in-flight video is generated without laser scanning, camera translation, interpolation, or dark noise subtraction. An unsupervised machine-learning technique is applied to analyze the measured spatiotemporal data set. A theoretical formula is introduced to perform least-square regression for numerically solving a nonlinear inverse problem, and extra-dimensional information is recovered without prior knowledge. The algorithm relies on the mathematical formulation equivalent to the superluminal motion in astrophysics, which is scaled by a factor of a quadrillionth. The reconstructed light-in-flight trajectory shows good agreement with the actual geometry of the light path. Applicability of the reconstruction approach to more complex scenes with multiple overlapped light trajectories is verified based on a data set generated by Monte Carlo simulations. Our approach could potentially provide novel functionalities to high-speed imaging applications such as non-line-of-sight imaging and time-resolved optical tomography.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (38)
Linear least squares
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Ordinary least squares
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable.
Least squares
The method of least squares is a standard approach in regression analysis to approximate the solution of overdetermined systems (sets of equations in which there are more equations than unknowns) by minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each individual equation. The most important application is in data fitting.
Show more
Related publications (37)

Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity

Rachid Guerraoui, Nirupam Gupta, Youssef Allouah, Geovani Rizk, Rafaël Benjamin Pinot

The theory underlying robust distributed learning algorithms, designed to resist adversarial machines, matches empirical observations when data is homogeneous. Under data heterogeneity however, which is the norm in practical scenarios, established lower bo ...
2023

Rapid motion estimation and correction using self-encoded FID navigators in 3D radial MRI

Tobias Kober, Davide Piccini

Purpose: To develop a self-navigated motion compensation strategy for 3D radial MRI that can compensate for continuous head motion by measuring rigid body motion parameters with high temporal resolution from the central k-space acquisition point (self-enco ...
Hoboken2023

A Least-Squares Method for the Solution of the Non-smooth Prescribed Jacobian Equation

Alexandre Caboussat, Dimitrios Gourzoulidis

We consider a least-squares/relaxation finite element method for the numerical solution of the prescribed Jacobian equation. We look for its solution via a least-squares approach. We introduce a relaxation algorithm that decouples this least-squares proble ...
SPRINGER/PLENUM PUBLISHERS2022
Show more
Related MOOCs (5)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.