Spontaneous symmetry breakingSpontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.
HyperinflationIn economics, hyperinflation is a very high and typically accelerating inflation. It quickly erodes the real value of the local currency, as the prices of all goods increase. This causes people to minimize their holdings in that currency as they usually switch to more stable foreign currencies. When measured in stable foreign currencies, prices typically remain stable. Unlike low inflation, where the process of rising prices is protracted and not generally noticeable except by studying past market prices, hyperinflation sees a rapid and continuing increase in nominal prices, the nominal cost of goods, and in the supply of currency.
Inflation targetingIn macroeconomics, inflation targeting is a monetary policy where a central bank follows an explicit target for the inflation rate for the medium-term and announces this inflation target to the public. The assumption is that the best that monetary policy can do to support long-term growth of the economy is to maintain price stability, and price stability is achieved by controlling inflation. The central bank uses interest rates as its main short-term monetary instrument.
Eternal inflationEternal inflation is a hypothetical inflationary universe model, which is itself an outgrowth or extension of the Big Bang theory. According to eternal inflation, the inflationary phase of the universe's expansion lasts forever throughout most of the universe. Because the regions expand exponentially rapidly, most of the volume of the universe at any given time is inflating. Eternal inflation, therefore, produces a hypothetically infinite multiverse, in which only an insignificant fractal volume ends inflation.
Ensemble interpretationThe ensemble interpretation of quantum mechanics considers the quantum state description to apply only to an ensemble of similarly prepared systems, rather than supposing that it exhaustively represents an individual physical system. The advocates of the ensemble interpretation of quantum mechanics claim that it is minimalist, making the fewest physical assumptions about the meaning of the standard mathematical formalism. It proposes to take to the fullest extent the statistical interpretation of Max Born, for which he won the Nobel Prize in Physics in 1954.
Many-worlds interpretationThe many-worlds interpretation (MWI) is an interpretation of quantum mechanics that asserts that the universal wavefunction is objectively real, and that there is no wave function collapse. This implies that all possible outcomes of quantum measurements are physically realized in some "world" or universe. In contrast to some other interpretations, such as the Copenhagen interpretation, the evolution of reality as a whole in MWI is rigidly deterministic and local.
Grand unification energyThe grand unification energy , or the GUT scale, is the energy level above which, it is believed, the electromagnetic force, weak force, and strong force become equal in strength and unify to one force governed by a simple Lie group. The exact value of the grand unification energy (if grand unification is indeed realized in nature) depends on the precise physics present at shorter distance scales not yet explored by experiments. If one assumes the Desert and supersymmetry, it is at around 1025 eV or GeV (≈ 1.
Interpretations of quantum mechanicsAn interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics might correspond to experienced reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation. These views on interpretation differ on such fundamental questions as whether quantum mechanics is deterministic or stochastic, local or non-local, which elements of quantum mechanics can be considered real, and what the nature of measurement is, among other matters.
Ultra high frequencyUltra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter (one decimeter). Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF (very high frequency) or lower bands.
Probability amplitudeIn quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The modulus squared of this quantity represents a probability density. Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link was first proposed by Max Born, in 1926. Interpretation of values of a wave function as the probability amplitude is a pillar of the Copenhagen interpretation of quantum mechanics.