Probing the topology of the quantum analog of a classical skyrmion
Related publications (36)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This Ph.D. thesis unveils the unique topological phenomena occurring in such networks, focusing on the intricate interplay between their Floquet topology, the presence of disorder, and their unitary scattering at microscopic and macroscopic scales. Using t ...
Quantum optics studies how photons interact with other forms of matter, the understanding of which was crucial for the development of quantum mechanics as a whole. Starting from the photoelectric effect, the quantum property of light has led to the develop ...
In the quest for controlling materials' properties, light as an external stimulus has a special place as it can create new states of matter and enable their ultrafast manipulation. In particular, spintronics, an exciting emergent field relying on the elect ...
Topological nature in different areas of physics and electronics has often been characterized and controlled through topological invariants depending on the global properties of the material. The validity of bulk-edge correspondence and symmetry-related to ...
Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, mor ...
Environment is assumed to play a negative role in quantum mechanics, destroying the coherence in a quantum system and, thus, randomly changing its state. However, for a quantum system that is initially in a degenerate ground state, the situation could be d ...
The exploration of open quantum many-body systems -systems of microscopic size exhibiting quantum coherence and interacting with their surrounding- has emerged as a key research area over the last years. The recent advances in controlling and preserving qu ...
Recent theoretical advances, based on a combination of concepts from Thouless' topological theory of adiabatic charge transport and a newly introduced gauge-invariance principle for transport coefficients, have permitted to connect (and reconcile) Faraday' ...
The interplay of topological characteristics in real space and reciprocal space can lead to the emergence of unconventional topological phases. In this Letter, we implement a novel mechanism for generating higher-Chern flat bands on the basis of twisted bi ...
Recent state-to-state experiments of methane scattering from Ni(111) and graphene-covered Ni(111) combined with quantum mechanical simulations suggest an intriguing correlation between the surface-induced vibrational energy redistribution (SIVR) during the ...