Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Objective: To investigate the association between socioeconomic deprivation and the persistence of SARS-CoV-2 clusters. Methods: We analyzed 3,355 SARS-CoV-2 positive test results in the state of Geneva (Switzerland) from February 26 to April 30, 2020. We used a spatiotemporal cluster detection algorithm to monitor SARS-CoV-2 transmission dynamics and defined spatial cluster persistence as the time in days from emergence to disappearance. Using spatial cluster persistence measured outcome and a deprivation index based on neighborhood-level census socioeconomic data, stratified survival functions were estimated using the Kaplan-Meier estimator. Population density adjusted Cox proportional hazards (PH) regression models were then used to examine the association between neighborhood socioeconomic deprivation and persistence of SARS-CoV-2 clusters. Results: SARS-CoV-2 clusters persisted significantly longer in socioeconomically disadvantaged neighborhoods. In the Cox PH model, the standardized deprivation index was associated with an increased spatial cluster persistence (hazard ratio [HR], 1.43 [95% CI, 1.28-1.59]). The adjusted tercile-specific deprivation index HR was 1.82 [95% CI, 1.56-2.17]. Conclusions: The increased risk of infection of disadvantaged individuals may also be due to the persistence of community transmission. These findings further highlight the need for interventions mitigating inequalities in the risk of SARS-CoV-2 infection and thus, of serious illness and mortality.
Didier Trono, Priscilla Turelli
Jérôme Chenal, Vitor Pessoa Colombo, Jürg Utzinger