Publication

Socioeconomically Disadvantaged Neighborhoods Face Increased Persistence of SARS-CoV-2 Clusters

Résumé

Objective: To investigate the association between socioeconomic deprivation and the persistence of SARS-CoV-2 clusters. Methods: We analyzed 3,355 SARS-CoV-2 positive test results in the state of Geneva (Switzerland) from February 26 to April 30, 2020. We used a spatiotemporal cluster detection algorithm to monitor SARS-CoV-2 transmission dynamics and defined spatial cluster persistence as the time in days from emergence to disappearance. Using spatial cluster persistence measured outcome and a deprivation index based on neighborhood-level census socioeconomic data, stratified survival functions were estimated using the Kaplan-Meier estimator. Population density adjusted Cox proportional hazards (PH) regression models were then used to examine the association between neighborhood socioeconomic deprivation and persistence of SARS-CoV-2 clusters. Results: SARS-CoV-2 clusters persisted significantly longer in socioeconomically disadvantaged neighborhoods. In the Cox PH model, the standardized deprivation index was associated with an increased spatial cluster persistence (hazard ratio [HR], 1.43 [95% CI, 1.28-1.59]). The adjusted tercile-specific deprivation index HR was 1.82 [95% CI, 1.56-2.17]. Conclusions: The increased risk of infection of disadvantaged individuals may also be due to the persistence of community transmission. These findings further highlight the need for interventions mitigating inequalities in the risk of SARS-CoV-2 infection and thus, of serious illness and mortality.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.