Publication

Topological Linear System Identification via Moderate Deviations Theory

Abstract

Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or the oscillatory nature of the state trajectories, for example. In this paper we develop a method to learn the topological class of an unknown stable system from a single trajectory of finitely many state observations. Using tools from moderate deviations theory we prove that the probability of misclassification decays exponentially with the number of observations at a rate that is proportional to the square of the smallest singular value of the true system matrix.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.