DiffeomorphismIn mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Given two manifolds and , a differentiable map is called a diffeomorphism if it is a bijection and its inverse is differentiable as well. If these functions are times continuously differentiable, is called a -diffeomorphism. Two manifolds and are diffeomorphic (usually denoted ) if there is a diffeomorphism from to .
State-space representationIn control engineering, model based fault detection and system identification a state-space representation is a mathematical model of a physical system specified as a set of input, output and variables related by first-order (not involving second derivatives) differential equations or difference equations. Such variables, called state variables, evolve over time in a way that depends on the values they have at any given instant and on the externally imposed values of input variables.
Spaces of test functions and distributionsIn mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the , that makes into a complete Hausdorff locally convex TVS.
Banach–Alaoglu theoremIn functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu's theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.
Covering spaceA covering of a topological space is a continuous map with special properties. Let be a topological space. A covering of is a continuous map such that there exists a discrete space and for every an open neighborhood , such that and is a homeomorphism for every . Often, the notion of a covering is used for the covering space as well as for the map . The open sets are called sheets, which are uniquely determined up to a homeomorphism if is connected. For each the discrete subset is called the fiber of .