A covering of a topological space is a continuous map with special properties.
Let be a topological space. A covering of is a continuous map
such that there exists a discrete space and for every an open neighborhood , such that and is a homeomorphism for every .
Often, the notion of a covering is used for the covering space as well as for the map . The open sets are called sheets, which are uniquely determined up to a homeomorphism if is connected. For each the discrete subset is called the fiber of . The degree of a covering is the cardinality of the space . If is path-connected, then the covering is denoted as a path-connected covering.
For every topological space , there is a covering map given by , which is called the trivial covering of
The map with is a covering of the unit circle . The base of the covering is and the covering space is . For any point such that , the set is an open neighborhood of . The preimage of under is
and the sheets of the covering are for The fiber of is
Another covering of the unit circle is the map with for some For an open neighborhood of an , one has:
A map which is a local homeomorphism but not a covering of the unit circle is with . There is a sheet of an open neighborhood of , which is not mapped homeomorphically onto .
Since a covering maps each of the disjoint open sets of homeomorphically onto it is a local homeomorphism, i.e. is a continuous map and for every there exists an open neighborhood of , such that is a homeomorphism.
It follows that the covering space and the base space locally share the same properties.
If is a connected and non-orientable manifold, then there is a covering of degree , whereby is a connected and orientable manifold.
If is a connected Lie group, then there is a covering which is also a Lie group homomorphism and is a Lie group.
If is a graph, then it follows for a covering that is also a graph.
If is a connected manifold, then there is a covering , whereby is a connected and simply connected manifold.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups.
In mathematics, the orthogonal group in dimension , denoted , is the group of distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose inverse equals its transpose).
We will discuss the basic structure of Lie groups and of their associated Lie algebras along with their finite dimensional representations and with a special emphasis on matrix Lie groups.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
Collapsing cell complexes was first introduced in the 1930's as a way to deform a space into a topological-equivalent subspace with a sequence of elementary moves. Recently, discrete Morse theory techniques provided an efficient way to construct deformatio ...
We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
SPRINGER HEIDELBERG2023
Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect ...