Publication

Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics

Abstract

Current advances in ultrafast electron microscopy make it possible to combine optical pumping of a nanostructure and electron beam probing with sub-Angstrom and femtosecond spatiotemporal resolution. We present a theory predicting that this technique can reveal a rich out-of-equilibrium dynamics of plasmon excitations in graphene and graphite samples. In a disruptive departure from the traditional probing of nanoscale excitations based on the identification of spectral features in the transmitted electrons, we show that the measurement of angle-resolved, energy-integrated inelastic electron scattering can trace the temporal evolution of plasmons in these structures and provide momentum-resolved mode identification, thus avoiding the need for highly monochromatic electron beams and the use of electron spectrometers. This previously unexplored approach to study the ultrafast dynamics of optical excitations can be of interest to understand and manipulate polaritons in 2D semiconductors and other materials exhibiting a strong thermo-optical response.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.