Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is increasingly easy to automatically swap faces in images and video or morph two faces into one using generative adversarial networks (GANs). The high quality of the resulted deep-morph raises the question of how vulnerable the current face recognition ...
This contribution presents a new database to address current challenges in face recognition. It contains face video sequences of 75 individuals acquired either through a laptop webcam or when mimicking the front-facing camera of a smartphone. Sequences hav ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
The manipulation of digital content is not a new phenomenon, but the application of machine learning to the creation of deepfakes has (i) radically improved the quality of output, (ii) slashed the resources required to produce realistic fakes at previously ...
EPFL International Risk Governance Center (IRGC)2019
Each smile is unique: one person surely smiles in different ways (e.g. closing/opening the eyes or mouth). Given one input image of a neutral face, can we generate multiple smile videos with distinctive characteristics? To tackle this one-to-many video gen ...
Existing approaches to distribute Generative Adversarial Networks (GANs) either (i) fail to scale for they typically put the two components of a GAN (the generator and the discriminator) on different machines, inducing significant communication overhead, o ...
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto ...
Despite the recent success of deep neural network-based approaches in sound source localization, these approaches suffer the limitations that the required annotation process is costly, and the mismatch between the training and test conditions undermines th ...
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto ...
While the quality of GAN image synthesis has improved tremendously in recent years, our ability to control and condition the output is still limited. Focusing on StyleGAN, we introduce a simple and effective method for making local, semantically-aware edit ...