Error functionIn mathematics, the error function (also called the Gauss error function), often denoted by erf, is a complex function of a complex variable defined as: Some authors define without the factor of . This nonelementary integral is a sigmoid function that occurs often in probability, statistics, and partial differential equations. In many of these applications, the function argument is a real number. If the function argument is real, then the function value is also real.
Computer graphics (computer science)Computer graphics is a sub-field of computer science which studies methods for digitally synthesizing and manipulating visual content. Although the term often refers to the study of three-dimensional computer graphics, it also encompasses two-dimensional graphics and image processing. Computer graphics studies manipulation of visual and geometric information using computational techniques. It focuses on the mathematical and computational foundations of image generation and processing rather than purely aesthetic issues.
Mathematical problemA mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems. It can also be a problem referring to the nature of mathematics itself, such as Russell's Paradox. Informal "real-world" mathematical problems are questions related to a concrete setting, such as "Adam has five apples and gives John three.
2D computer graphics2D computer graphics is the generation of s—mostly from two-dimensional models (such as 2D geometric models, text, and digital images) and by techniques specific to them. It may refer to the branch of computer science that comprises such techniques or to the models themselves. 2D computer graphics are mainly used in applications that were originally developed upon traditional printing and drawing technologies, such as typography, cartography, technical drawing, advertising, etc.
Hermite polynomialsIn mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: signal processing as Hermitian wavelets for wavelet transform analysis probability, such as the Edgeworth series, as well as in connection with Brownian motion; combinatorics, as an example of an Appell sequence, obeying the umbral calculus; numerical analysis as Gaussian quadrature; physics, where they give rise to the eigenstates of the quantum harmonic oscillator; and they also occur in some cases of the heat equation (when the term is present); systems theory in connection with nonlinear operations on Gaussian noise.
Asymptotic analysisIn mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
Root-finding algorithmsIn mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros, expressed either as floating-point numbers or as small isolating intervals, or disks for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
Spline interpolationIn the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the values, for example, fitting nine cubic polynomials between each of the pairs of ten points, instead of fitting a single degree-ten polynomial to all of them.
Multivariate interpolationIn numerical analysis, multivariate interpolation is interpolation on functions of more than one variable (multivariate functions); when the variates are spatial coordinates, it is also known as spatial interpolation. The function to be interpolated is known at given points and the interpolation problem consists of yielding values at arbitrary points . Multivariate interpolation is particularly important in geostatistics, where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or depths in a hydrographic survey).
Sprite (computer graphics)In computer graphics, a sprite is a two-dimensional bitmap that is integrated into a larger scene, most often in a 2D video game. Originally, the term sprite referred to fixed-sized objects composited together, by hardware, with a background. Use of the term has since become more general. Systems with hardware sprites include arcade video games of the 1970s and 1980s; game consoles including as the Atari VCS (1977), ColecoVision (1982), Nintendo Entertainment System (1983), and Sega Genesis (1988); and home computers such as the TI-99/4 (1979), Atari 8-bit family (1979), Commodore 64 (1982), MSX (1983), Amiga (1985), and X68000 (1987).