Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Crustose coralline algae (CCA) are key organisms in coral reef ecosystems, where they contribute to reef building and substrate stabilization. While ocean acidification due to increasing CO2 can affect the biology, physiology and ecology of fully developed ...
Marine phytoplankton can regulate their stoichiometric composition in response to variations in the availability of nutrients, light and the pH of seawater. Varying elemental composition of photoautotrophs affects several important ecological and biogeoche ...
As the oceans become less alkaline due to rising CO2 levels, deleterious consequences are expected for calcifying corals. Predicting how coral calcification will be affected by on-going ocean acidification (OA) requires an accurate assessment of CaCO3 depo ...
coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we ...
Unicellular algae play important roles in the biogeochemical cycles of numerous elements, particularly through the biomineralization capacity of certain species (e.g., coccolithophores greatly contributing to the "organic carbon pump" of the oceans), and u ...
Stream ecosystem metabolism integrates production and respiration of organic matter and plays a fundamental role in the global carbon (C) cycle. Several studies have identified distal and proximal physical controls, for example, land use and transient s ...
The fate of dissolved organic carbon (DOC) is partly determined by its availability to microbial degradation. Organisms at upper trophic levels could influence the bioavailability of DOC via cascading effects on primary producers and bacteria. Here we expe ...
Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain ...
Scaling aquatic ecosystem processes like nutrient removal is critical for assessing the importance of streams and rivers to watershed nutrient export. We used pulse NH4+ enrichment experiments and measured net NH4+ uptake in 7 streams throughout a mountain ...
In fluvial ecosystems mineral erosion, carbon (C) and nitrogen (N) fluxes are linked via organo-mineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles ...