Prediction of Phonon-Mediated Superconductivity with High Critical Temperature in the Two-Dimensional Topological Semimetal W2N3
Related publications (39)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Explaining the mechanism of superconductivity in the high-T-c cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, or by a c ...
AMER PHYSICAL SOC2022
,
Superconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting the main characteristics o ...
Magnetic impurities generate a wealth of phenomena on surfaces. On metals, conducting electrons screen the magnetic moment giving rise to the Kondo effect. On superconductors, the Yu-Shiba-Rusinov (YSR) states emerge inside the superconducting gap due to t ...
Phonon anharmonicity plays a crucial role in determining the stability and vibrational properties of high-pressure hydrides. Furthermore, strong anharmonicity can render phonon quasiparticle picture obsolete questioning standard approaches for modeling sup ...
The discovery of unconventional superconductivity in a broad class of iron-based materials invoked extensive research on the corresponding compounds of other transition metals. For instance, BaNi2P2 exhibits a superconducting transition with a critical tem ...
A single spin in a Josephson junction can reverse the flow of the supercurrent by changing the sign of the superconducting phase difference across it. At mesoscopic length scales, these pi-junctions are employed in various applications, such as finding the ...
Within the ultimate goal of classifying universality in quantum many-body dynamics, understanding the relation between out-of-equilibrium and equilibrium criticality is a crucial objective. Models with power-law interactions exhibit rich well-understood cr ...
The binary Re1-xMox alloys, known to cover the full range of solid solutions, were successfully synthesized and their crystal structures and physical properties investigated via powder x-ray diffraction, electrical resistivity, magnetic susceptibility, and ...
The motivation to search for signatures of superconductivity in Weyl semi-metals and other topological phases lies in their potential for hosting exotic phenomena such as nonzero-momentum pairing or the Majorana fermion, a viable candidate for the ultimate ...
Molybdenum ditelluride (MoTe2) is attracting considerable interest since it is the archetypal type-II Weyl semimetal and a candidate for topological superconductivity. We investigate the superconducting phase diagram of two MoTe2 polymorphs using the ab in ...