Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Conversion of CO2 into valuable compounds, including fuels, with renewable energy sources and sustainable compounds is a challenge addressed by artificial photosynthesis research. In particular, the application of solar assisted electrochemical (EC) processes, in which electrons are furnished by a photovoltaic (PV) cell, is a promising approach. A PV-EC system is described, consisting of a CIGS (copper indium gallium selenide) PV unit linked to a carbon electrode loaded with cobalt phthalocyanine as molecular catalyst, able to achieve the CO2 reduction to CO and then to methanol in aqueous media with limited bias voltage. Using CO as starting material, a partial current density of ca. 0.6 mA cm(-2) for methanol is obtained at a bias voltage corresponding to a low 240 mV overpotential. Remarkably, the liquid fuel production can be sustained for at least 7 h. Under ideal conditions, the CO2-to-CH3OH reaction shows a global Faradaic efficiency of 28 %.