Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially used for electricity generation and as photosensors.
A photovoltaic system employs solar modules, each comprising a number of solar cells, which generate electrical power. PV installations may be ground-mounted, rooftop-mounted, wall-mounted or floating. The mount may be fixed or use a solar tracker to follow the sun across the sky.
Photovoltaic technology helps to mitigate climate change because it emits much less carbon dioxide than fossil fuels. Solar PV has specific advantages as an energy source: once installed, its operation does not generate any pollution or any greenhouse gas emissions; it shows scalability in respect of power needs and silicon has large availability in the Earth's crust, although other materials required in PV system manufacture such as silver may constrain further growth in the technology. Other major constraints identified include competition for land use. The use of PV as a main source requires energy storage systems or global distribution by high-voltage direct current power lines causing additional costs, and also has a number of other specific disadvantages such as variable power generation which have to be balanced. Production and installation does cause some pollution and greenhouse gas emissions, though only a fraction of the emissions caused by fossil fuels.
Photovoltaic systems have long been used in specialized applications as stand-alone installations and grid-connected PV systems have been in use since the 1990s. Photovoltaic modules were first mass-produced in 2000, when the German government funded a one hundred thousand roof program. Decreasing costs has allowed PV to grow as an energy source. This has been partially driven by massive Chinese government investment in developing solar production capacity since 2000, and achieving economies of scale.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This class is intended to make students familiar with dye sensitized solar cells. It presents the principle of design and rationalize the influence of various components on the power conversion effici
The objective of this lecture is to give an in-depth understanding of the physics and manufacturing processes of photovoltaic solar cells and related devices (photodetectors, photoconductors). The pri
Introduction to the physical concepts involved in the description of optical and electronic transport properties of thin-film semiconductor materials found in many large-area applications (solar cells
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Silicon tetrachloride or tetrachlorosilane is the inorganic compound with the formula SiCl4. It is a colorless volatile liquid that fumes in air. It is used to produce high purity silicon and silica for commercial applications. It is a part of the chlorosilane family. Silicon tetrachloride is prepared by the chlorination of various silicon compounds such as ferrosilicon, silicon carbide, or mixtures of silicon dioxide and carbon. The ferrosilicon route is most common.
A power inverter, inverter or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC. The input voltage, output voltage and frequency, and overall power handling depend on the design of the specific device or circuitry. The inverter does not produce any power; the power is provided by the DC source.
Photovoltaic (PV) technology is necessary for global decarbonization. However, one of the challenges of the technology is that its land use may conflict with other space demands. Building-integrated photovoltaic (BIPV) is a solution to efficiently use the ...
Solar photovoltaics (PV) is one of the most competitive renewable energy technologies in order to meet the increasing global energy demand and decrease CO2 emissions by competing effectively with fossil fuels. One of the important applications of PV energy ...
Covers the formation of Al back-surface field in crystalline silicon solar cells, exploring Al melting, Si dissolution, eutectic liquid formation, and more.
Explores high-efficiency solar cells, discussing PERC, selective emitter, IBC, and TOPCON concepts, along with advancements in GaAs and perovskite cells.
Because building-integrated photovoltaic (BIPV) modules are fully integrated into a building envelope, the back of the module can be exposed to little or no ventilation, resulting in increased operating temperatures. As the temperature increases, the perfo ...