Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We propose a principled method for projecting an arbitrary square matrix to the non- convex set of asymptotically stable matrices. Leveraging ideas from large deviations theory, we show that this projection is optimal in an information-theoretic sense and that it simply amounts to shifting the initial matrix by an optimal linear quadratic feedback gain, which can be computed exactly and highly efficiently by solving a standard linear quadratic regulator problem. The proposed approach allows us to learn the system matrix of a stable linear dynamical system from a single trajectory of correlated state observations. The resulting estimator is guaranteed to be stable and offers explicit statistical bounds on the estimation error.
Daniel Kressner, Alice Cortinovis