Motor state transitions and Breathing in Brain Machine Interfaces
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We are interested in developing and building an experimental system for controlling a quadruped robot with a brain-derived signal of a rat. We recorded large ensembles of neurones in left M1 and right M1 and S1 using chronically implanted multi-electrodes ...
The idea of moving robots or prosthetic devices not by manual control, but by mere thinking (i.e., the brain activity of human subjects) has fascinated researchers for the last 30 years, but it is only now that first experiments have shown the possibility ...
A Brain-Computer Interface (BCI) allow direct expression of its user�s will by interpreting signals which directly reflect the brain�s activity, thus bypassing the natural efferent channels (nerves and muscles). To be correctly mastered, it is needed t ...
Brain-Machine Interfaces (BMIs) transform the brain activity of a human operator into executable commands that can be sent to a machine, usually a computer or robot, to perform intended tasks. In addition to current biomedical applications, available techn ...
Brain-Computer Interfaces (BCIs) need an uninterrupted flow of feedback to the user, which is usually delivered through the visual channel. Our aim is to explore the benefits of vibrotactile feedback during users� training and control of EEG-based BCI ap ...
Brains interfaced to machines, where thought is used to control and manipulate these machines. This is the vision examined in this chapter. First-generation brain-machine interfaces have already been developed, and technological developments must surely le ...
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
People with severe motor disabilities (spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), etc.) but with intact brain functions are somehow prisoners of their own body. They need alternative ways of communication and control to interact with th ...
A brain-computer interface (BCI) is a communication system that translates brain activity into commands for a computer or other devices. In other words, a BCI allows users to act on their environment by using only brain activity, without using peripheral n ...
Controlling a robotic device by using human brain signals is an interesting and challenging task. The device may be complicated to control and the non-stationary nature of the brain signals provides for a rather unstable input. With the use of intelligent ...