DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this supplementary material, we present the details of the neural network architecture and training settings used in all our experiments. This holds for all experiments presented in the main paper as well as in this supplementary material. We also show ...
Fiber endoscopy plays an important role in the clinical diagnosis and treatment processes involved in modern medicine. Thin fiber probes can relay information from confined places in the human body that are inaccessible for conventional bulky microscopes. ...
Deep neural networks have recently achieved tremen-dous success in image classification. Recent studies havehowever shown that they are easily misled into incorrectclassification decisions by adversarial examples. Adver-saries can even craft attacks by que ...
Optical diffraction tomography (ODT) provides us 3D refractive index (RI) distributions of transparent samples. Since RI values differ across different materials, they serve as endogenous contrasts. It, therefore, enables us to image without pre-processing ...
In this paper, we trace the history of neural networks applied to natural language understanding tasks, and identify key contributions which the nature of language has made to the development of neural network architectures. We focus on the importance of v ...
A common pattern of progress in engineering has seen deep neural networks displacing human-designed logic. There are many advantages to this approach, divorcing decisionmaking from human oversight and intuition has costs as well. One is that deep neural ne ...
We accurately reconstruct three-dimensional (3-D) refractive index (RI) distributions from highly ill-posed two-dimensional (2-D) measurements using a deep neural network (DNN). Strong distortions are introduced on reconstructions obtained by the Wolf tran ...
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
This tutorial covers biomedical image reconstruction, from the foundational concepts of system modeling and direct reconstruction to modern sparsity and learning-based approaches. Imaging is a critical tool in biological research and medicine, and most ima ...
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...