Crystal Field Effect and Electric Field Screening in Multilayer Graphene with and without Twist
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
Molecular hydrogen adsorbed on graphene was investigated by analyzing rotational excitation spectra obtained with a gate-tunable scanning tunneling microscope (STM). Through the shift of the rotational excitation energy, the tunability of physisorbed H2 on ...
Single-layer graphene (SLG) membranes, hosting molecular-sieving nanopores have been regarded as the ultimate gas separation membranes, attributing to the fact that they are the thinnest possible molecular barrier. However, the expected attractive performa ...
EPFL2021
, ,
We investigate twisted double bilayer graphene (TDBG), a four-layer system composed of two AB-stacked graphene bilayers rotated with respect to each other by a small angle. Our ab initio band structure calculations reveal a considerable energy gap at the c ...
AMER CHEMICAL SOC2020
, , ,
Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal (T-1) and transverse (T-2) relaxation times were postulated to be equal ...
Today's great challenges of energy and informational technologies are addressed with a singular compound, Li-and Na-doped few-layer graphene. All that is impossible for graphite (homogeneous and high-level Na doping) and unstable for single-layer graphene ...
Electron-electron interactions play an important role in graphene and related systems and can induce exotic quantum states, especially in a stacked bilayer with a small twist angle(1-7). For bilayer graphene where the two layers are twisted by the 'magic a ...
Twisted bilayer graphene (TBG) is a two-dimensional chiral material whose optical activity is remarkably strong for its atomic thickness. While the chiral optical properties of TBG are currently well understood, the optical activity of quantum dots (QDs) m ...
2020
,
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
Physical systems with material properties modulated in time provide versatile routes for designing magnetless nonreciprocal devices. Traditionally, nonreciprocity in such systems is achieved exploiting both temporal and spatial modulations, which inevitabl ...