Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Nanostructured graphitic materials, including graphene hosting Å to nanometer-sized pores, have attracted attention for various applications such as separations, sensors, and energy storage. Graphene with Å-scale pores is a promising next-generation materi ...
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
Transmission electron microscopy characterization may damage materials, but an electron beam can also induce interesting dynamics. Elastic knock-on is the main electron irradiation damage mechanism in metals including graphene, and although atomic vibratio ...
The on-surface synthesis of nano-graphenes has led the charge in prototyping structures with perspectives beyond silicon-based technology. Following reports of open-shell systems in graphene-nanoribbons (GNRs), a flurry of research activity was directed at ...
The delafossite metal PtCoO2 is among the highest-purity materials known, with low-temperature mean free path up to 5 mu m in the best as-grown single crystals. It exhibits a strongly faceted, nearly hexagonal Fermi surface. This property has profound cons ...
Graphene nanoribbons (GNRs) have gained significant attention in nanoelectronics due to their potential for precise tuning of electronic properties through variations in edge structure and ribbon width. However, the synthesis of GNRs with highly sought-aft ...
While bottom-up synthesis allows for precise control over the properties of graphene nanoribbons (GNRs), the use of certain precursor molecules can result in edge defects, such as missing benzene rings that resemble a 'bite'. We investigate the adverse eff ...
The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the che ...
Single-layer graphene (SLG) membranes, hosting molecular-sieving nanopores have been regarded as the ultimate gas separation membranes, attributing to the fact that they are the thinnest possible molecular barrier. However, the expected attractive performa ...