Affine transformationIn Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments.
Maximum entropy thermodynamicsIn physics, maximum entropy thermodynamics (colloquially, MaxEnt thermodynamics) views equilibrium thermodynamics and statistical mechanics as inference processes. More specifically, MaxEnt applies inference techniques rooted in Shannon information theory, Bayesian probability, and the principle of maximum entropy. These techniques are relevant to any situation requiring prediction from incomplete or insufficient data (e.g., , signal processing, spectral analysis, and inverse problems).
Guttman scaleIn the analysis of multivariate observations designed to assess subjects with respect to an attribute, a Guttman scale (named after Louis Guttman) is a single (unidimensional) ordinal scale for the assessment of the attribute, from which the original observations may be reproduced. The discovery of a Guttman scale in data depends on their multivariate distribution's conforming to a particular structure (see below).