**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Affine transformation

Summary

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles.
More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line.
If X is the point set of an affine space, then every affine transformation on X can be represented as the composition of a linear transformation on X and a translation of X. Unlike a purely linear transformation, an affine transformation need not preserve the origin of the affine space. Thus, every linear transformation is affine, but not every affine transformation is linear.
Examples of affine transformations include translation, scaling, homothety, similarity, reflection, rotation, shear mapping, and compositions of them in any combination and sequence.
Viewing an affine space as the complement of a hyperplane at infinity of a projective space, the affine transformations are the projective transformations of that projective space that leave the hyperplane at infinity invariant, restricted to the complement of that hyperplane.
A generalization of an affine transformation is an affine map (or affine homomorphism or affine mapping) between two (potentially different) affine spaces over the same field k. Let (X, V, k) and (Z, W, k) be two affine spaces with X and Z the point sets and V and W the respective associated vector spaces over the field k.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (198)

Related people (36)

Related concepts (39)

Related courses (31)

Related MOOCs (9)

Related units (5)

Related lectures (381)

August Ferdinand Möbius

August Ferdinand Möbius (UKˈmɜːbiəs, USˈmeɪ-,_ˈmoʊ-; ˈmøːbi̯ʊs; 17 November 1790 – 26 September 1868) was a German mathematician and theoretical astronomer. Möbius was born in Schulpforta, Electorate of Saxony, and was descended on his mother's side from religious reformer Martin Luther. He was home-schooled until he was 13, when he attended the college in Schulpforta in 1803, and studied there, graduating in 1809. He then enrolled at the University of Leipzig, where he studied astronomy under the mathematician and astronomer Karl Mollweide.

Rotation (mathematics)

Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire (n − 1)-dimensional flat of fixed points in a n-dimensional space.

Projective geometry

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa.

PHYS-314: Quantum physics II

The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.

MGT-418: Convex optimization

This course introduces the theory and application of modern convex optimization from an engineering perspective.

MATH-111(e): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Elements of Lie Groups and Algebras

Explores the transformation of vectors and tensors in quantum physics, emphasizing Lie groups and algebras.

Data Augmentation: Deep Learning

Explores data augmentation as a key regularization method in deep learning, covering techniques like translations, rotations, and artistic style transfer.

Projections, Transformations: MN03-MN95

Explores Swiss survey frameworks, continuous territory transformation, satellite tracking principles, and ellipsoid coordinate conversion.

Salvatore Aprea, Barbara Galimberti

In a society that recognizes the urgency of safeguarding the environment and drastically limiting land transformations and energy-intensive activities like constructing new buildings, the protection of architectural and environmental heritage is no longer ...

2024Annalisa Buffa, Pablo Antolin Sanchez, Margarita Chasapi

This contribution presents a model order reduction framework for real-time efficient solution of trimmed, multi-patch isogeometric Kirchhoff-Love shells. In several scenarios, such as design and shape optimization, multiple simulations need to be performed ...

2023Auke Ijspeert, Mohamed Bouri, Ali Reza Manzoori, Tian Ye

The growing demand for online gait phase (GP) estimation, driven by advancements in exoskeletons and prostheses, has prompted numerous approaches in the literature. Some approaches explicitly use time, while others rely on state variables to estimate the G ...