Development of a Mechanical Wedge-Barrel Anchor for CFRP Rods: Static and Fatigue Behaviors
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The constant improvement of polymer composite materials has allowed their integration in many industrial fields where their mechanical and chemical properties are apparently attractive. Mixed metal-composite insulators are now increasingly used for high vo ...
Reinforced concrete being the most applied construction material today performs very well in most applications but still lacks durability under severe environmental conditions. Especially existing structures built decades ago show degradation. Using Ultra- ...
The extremely low permeability of Ultra-High Performance Fibre Reinforced Concretes (UHPFRC)associated to their outstanding mechanical properties make them especially suitable to locally "harden" reinforced concrete structures in critical zones subjected t ...
A recently-developed model for the numerical simulation of tensile stress-strain behavior in fiber-reinforced composites is used to predict the tensile strength of a metal matrix composite consisting of a Ti-1100 matrix reinforced with SCS-6 SiC fibers. Da ...
The effect of processing-induced fiber damage, or equivalently the effect of fiber length in discontinuously-reinforced composites, on the tensile stress-strain behavior of a fiber-reinforced ceramic or metal matrix is determined as a function of the exten ...
Ultra-High Performance Fibre-Reinforced Concretes (UHPFRC) have high mechanical strengths (fU,c > 150 MPa, fU,t > 6 MPa) and exhibit quasi-strain hardening in tension. Their very low permeability prevents the ingress of detrimental substances. In composite ...
The aim of this thesis is to assess the feasibility of integrating nanoparticles into glass fiber (GF) reinforced isotactic polypropylene (iPP) composites via existing thermoplastic processing routes, and to investigate whether this results in significant ...
The extremely low permeability of Ultra-High Performance Fibre Reinforced Concretes (UHPFRC) associated with their outstanding mechanical properties make them especially suitable to locally "harden" reinforced concrete structures in critical zones subjecte ...
A model for predicting composite material strength degradation under elevated and high temperatures is proposed. This model is based on the morphology of the mixture of materials in different states. The degradation of resin-dominated shear strength can be ...
In this paper, we use the established cohesive element method to investigate the probabilistic failure of a model ceramic system under dynamic tensile loading. Monte-Carlo simulations are performed to calculate the fracture strength of a monolithic silicon ...