Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.
Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization. Recently there has been a growing interest in understanding the best possible pseudopolynomial running times for these problems with respect to various parameters. In this paper we focus on the maximum item size s and the maximum item value v. We give algorithms that run in time O(n + s³) and O(n + v³) for the Knapsack problem, and in time Õ(n + s^{5/3}) for the Subset Sum problem. Our algorithms work for the more general problem variants with multiplicities, where each input item comes with a (binary encoded) multiplicity, which succinctly describes how many times the item appears in the instance. In these variants n denotes the (possibly much smaller) number of distinct items. Our results follow from combining and optimizing several diverse lines of research, notably proximity arguments for integer programming due to Eisenbrand and Weismantel (TALG 2019), fast structured (min,+)-convolution by Kellerer and Pferschy (J. Comb. Optim. 2004), and additive combinatorics methods originating from Galil and Margalit (SICOMP 1991).
polynomial-time'' means
efficient''. That algorithm is sequential and deterministic. We have also known since the 1980s that the matching problem has efficient parallel algorithms if the use of randomness is allowed. Formally, it is in the class RNC, i.e., it has randomized algorithms that use polynomially many processors and run in polylogarithmic time. However, we do not know if randomness is necessary - that is, whether the matching problem is in the class NC.
In this thesis we show that the matching problem is in quasi-NC. That is, we give a deterministic parallel algorithm that runs in O(log^3 n) time on n^{O(log^2 n)} processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani to obtain an RNC algorithm. Our proof extends the framework of Fenner, Gurjar and Thierauf, who proved the analogous result in the special case of bipartite graphs. Compared to that setting, several new ingredients are needed due to the significantly more complex structure of perfect matchings in general graphs. In particular, our proof heavily relies on the laminar structure of the faces of the perfect matching polytope.