**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Knapsack and Subset Sum with Small Items

Abstract

Knapsack and Subset Sum are fundamental NP-hard problems in combinatorial optimization. Recently there has been a growing interest in understanding the best possible pseudopolynomial running times for these problems with respect to various parameters. In this paper we focus on the maximum item size s and the maximum item value v. We give algorithms that run in time O(n + s³) and O(n + v³) for the Knapsack problem, and in time Õ(n + s^{5/3}) for the Subset Sum problem. Our algorithms work for the more general problem variants with multiplicities, where each input item comes with a (binary encoded) multiplicity, which succinctly describes how many times the item appears in the instance. In these variants n denotes the (possibly much smaller) number of distinct items. Our results follow from combining and optimizing several diverse lines of research, notably proximity arguments for integer programming due to Eisenbrand and Weismantel (TALG 2019), fast structured (min,+)-convolution by Kellerer and Pferschy (J. Comb. Optim. 2004), and additive combinatorics methods originating from Galil and Margalit (SICOMP 1991).

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (20)

Related concepts (35)

Related publications (45)

Subset sum problem

The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . The problem is known to be NP-hard. Moreover, some restricted variants of it are NP-complete too, for example: The variant in which all inputs are positive. The variant in which inputs may be positive or negative, and . For example, given the set , the answer is yes because the subset sums to zero.

Knapsack problem

The knapsack problem is the following problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

Combinatorial optimization

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...

Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi

This paper offers a new algorithm to efficiently optimize scheduling decisions for dial-a-ride problems (DARPs), including problem variants considering electric and autonomous vehicles (e-ADARPs). The scheduling heuristic, based on linear programming theor ...

In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...