Lead compoundA lead compound (ˈliːd, i.e. a "leading" compound, not to be confused with various compounds of the metallic element lead) in drug discovery is a chemical compound that has pharmacological or biological activity likely to be therapeutically useful, but may nevertheless have suboptimal structure that requires modification to fit better to the target; lead drugs offer the prospect of being followed by back-up compounds. Its chemical structure serves as a starting point for chemical modifications in order to improve potency, selectivity, or pharmacokinetic parameters.
First pass effectThe first pass effect (also known as first-pass metabolism or presystemic metabolism) is a phenomenon of drug metabolism at a specific location in the body which leads to a reduction in the concentration of the active drug, specifically when administered orally, before it reaches the site of action or systemic circulation. It is the fraction of drug lost during the process of absorption which is generally related to the liver and gut wall.
Chemical databaseA chemical database is a database specifically designed to store chemical information. This information is about chemical and crystal structures, spectra, reactions and syntheses, and thermophysical data. Bioactivity databases correlate structures or other chemical information to bioactivity results taken from bioassays in literature, patents, and screening programs. Chemical structures are traditionally represented using lines indicating chemical bonds between atoms and drawn on paper (2D structural formulae).
Drug overdoseA drug overdose (overdose or OD) is the ingestion or application of a drug or other substance in quantities much greater than are recommended. Typically it is used for cases when a risk to health will potentially result. An overdose may result in a toxic state or death. The word "overdose" implies that there is a common safe dosage and usage for the drug; therefore, the term is commonly applied only to drugs, not poisons, even though many poisons as well are harmless at a low enough dosage.
PseudoenzymePseudoenzymes are variants of enzymes (usually proteins) that are catalytically-deficient (usually inactive), meaning that they perform little or no enzyme catalysis. They are believed to be represented in all major enzyme families in the kingdoms of life, where they have important signaling and metabolic functions, many of which are only now coming to light. Pseudoenzymes are becoming increasingly important to analyse, especially as the bioinformatic analysis of genomes reveals their ubiquity.
UracilUracil (ˈjʊərəsɪl) (symbol U or Ura) is one of the four nucleobases in the nucleic acid RNA. The others are adenine (A), cytosine (C), and guanine (G). In RNA, uracil binds to adenine via two hydrogen bonds. In DNA, the uracil nucleobase is replaced by thymine (T). Uracil is a demethylated form of thymine. Uracil is a common and naturally occurring pyrimidine derivative. The name "uracil" was coined in 1885 by the German chemist Robert Behrend, who was attempting to synthesize derivatives of uric acid.