On the asymptotic behavior of solutions to the Vlasov-Poisson system
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We prove small data modified scattering for the Vlasov-Poisson system in dimension d=3 using a method inspired from dispersive analysis. In particular, we identify a simple asymptotic dynamic related to the scattering mass.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Asymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for Ordnung, meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows.
In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (Alternatively, and perhaps contrarily, in applying an S-matrix, asymptotically free refers to free particles states in the distant past or the distant future.) Asymptotic freedom is a feature of quantum chromodynamics (QCD), the quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear matter.
We consider several aspects of conjugating symmetry methods, including the method of invariants, with an asymptotic approach. In particular we consider how to extend to the stochastic setting several ideas which are well established in the deterministic on ...
We study the asymptotic behavior of the N-clock model, a nearest neighbors ferromagnetic spin model on the d-dimensional cubic epsilon-lattice in which the spin field is constrained to take values in a discretization S-N of the unit circle S-1 consisting o ...
We construct (modified) scattering operators for the Vlasov–Poisson system in three dimensions, mapping small asymptotic dynamics as t→−∞ to asymptotic dynamics as t→+∞. The main novelty is the construction of modified wave operators, but we also obtain a ...