Probabilistic and Bayesian methods for uncertainty quantification of deterministic and stochastic differential equations
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this work, we tackle the problem of minimising the Conditional-Value-at-Risk (CVaR) of output quantities of complex differential models with random input data, using gradient-based approaches in combination with the Multi-Level Monte Carlo (MLMC) method ...
Service-level requirements play a crucial role in eliminating stock-outs in a production pipeline. However, delivering a specific service level can become an unattainable goal given the various uncertainties influencing both the production pipeline and cus ...
This paper presents a novel method for solving partial differential equations on three-dimensional CAD geometries by means of immersed isogeometric discretizations that do not require quadrature schemes. It relies on a newly developed technique for the eva ...
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...
This thesis focuses on the numerical analysis of partial differential equations (PDEs) with an emphasis on first and second-order fully nonlinear PDEs. The main goal is the design of numerical methods to solve a variety of equations such as orthogonal maps ...
The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated ...
Because of their robustness, efficiency, and non intrusiveness, Monte Carlo methods are probably the most popular approach in uncertainty quantification for computing expected values of quantities of interest. Multilevel Monte Carlo (MLMC) methods signific ...
We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a pr ...
This thesis is devoted to the construction, analysis, and implementation of two types of hierarchical Markov Chain Monte Carlo (MCMC) methods for the solution of large-scale Bayesian Inverse Problems (BIP).The first hierarchical method we present is based ...
In this Master thesis we explore the convex integration method by S. Müller and V. Šverák and its applications to partial differential equations. In particular, we use it to build very irregular solutions to elliptic systems. We also apply this method to b ...