**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Spectral Coarse Spaces for the Substructured Parallel Schwarz Method

Abstract

The parallel Schwarz method (PSM) is an overlapping domain decomposition (DD) method to solve partial differential equations (PDEs). Similarly to classical nonoverlapping DD methods, the PSM admits a substructured formulation, that is, it can be formulated as an iteration acting on variables defined exclusively on the interfaces of the overlapping decomposition. In this manuscript, spectral coarse spaces are considered to improve the convergence and robustness of the substructured PSM. In this framework, the coarse space functions are defined exclusively on the interfaces. This is in contrast to classical two-level volume methods, where the coarse functions are defined in volume, though with local support. The approach presented in this work has several advantages. First, it allows one to use some of the well-known efficient coarse spaces proposed in the literature, and facilitates the numerical construction of efficient coarse spaces. Second, the computational work is comparable or lower than standard volume two-level methods. Third, it opens new interesting perspectives as the analysis of the new two-level substructured method requires the development of a new convergence analysis of general two-level iterative methods. The new analysis casts light on the optimality of coarse spaces: given a fixed dimension m, the spectral coarse space made by the first m dominant eigenvectors is not necessarily the minimizer of the asymptotic convergence factor. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (1)

Related MOOCs (5)

Related concepts (6)

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

Matlab & octave for beginners

Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique

MATLAB and Octave for Beginners

Learn MATLAB and Octave and start experimenting with matrix manipulations, data visualizations, functions and mathematical computations.

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function. The function is often thought of as an "unknown" to be solved for, similar to how x is thought of as an unknown number to be solved for in an algebraic equation like x2 − 3x + 2 = 0. However, it is usually impossible to write down explicit formulas for solutions of partial differential equations.

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordinate is needed to specify a point on it - for example, the point at 5 on a number line. A surface, such as the boundary of a cylinder or sphere, has a dimension of two (2D) because two coordinates are needed to specify a point on it - for example, both a latitude and longitude are required to locate a point on the surface of a sphere.

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.

Two-level domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, we use the excellent smoothing properties of domain decomposition methods to define a new class of substructured two-level methods, for which both domain decomposition smoothers and coarse correction steps are defined on the interfaces. This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, our approach does not require the explicit construction of coarse spaces, and it permits a multilevel extension, which is desirable when the high dimension of the problem or the scarce quality of the coarse space prevents the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

2021