A Software Tool for the Real-Time in Vivo Evaluation of Neural Electrodes' Selectivity
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis presents an extensive exploration of neuroelectronic interfaces, focusing on microfabrication, in silico modeling, and their applications in designing and fabricating devices for neural interfacing. The research encompasses both peripheral nerv ...
Over the last decades, implantable neural interfaces have been extensively explored and effectively deployed to address neurological and mental health disorders. The existing solutions present several limitations. Firstly, the physical size of the implanta ...
The modulation of the cervical vagus nerve (VN) using neural electrodes has shown great potential to treat cardiovascular, inflammatory, intestinal, or respiratory dysfunctions. Intraneural electrodes have shown great potentials for other neuroprosthetic a ...
Brain-computer interfaces (BCIs) are neural prosthetics that enable closed-loop electrophysiology procedures. These devices are currently used in fundamental neurophysiology research, and they are moving toward clinical viability for neural rehabilitation. ...
Development of neural interface and brain-machine interface (BMI) systems enables the treatment of neurological disorders including cognitive, sensory, and motor dysfunctions. While neural interfaces have steadily decreased in form factor, recent developme ...
Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, pote ...
Neurointerfaces have acquired major relevance as both rehabilitative and therapeutic tools for patients with spinal cord injury, limb amputations and other neural disorders. Bidirectional neural interfaces are a key component for the functional control of ...
ELSEVIER2020
Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction wi ...
Transient electronics enabling devices to safely disappear in the environment can be applied not only in green electronics, but also in bioelectronic medicine. Neural implants able to degrade harmlessly inside the body eliminate the need for removal surger ...
Objective. Recent results have shown the potentials of neural interfaces to provide sensory feedback to subjects with limb amputation increasing prosthesis usability. However, their advantages for decoding motor control signals over current methods based o ...