**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# SCAFFOLD Stochastic Controlled Averaging for Federated Learning

Abstract

Federated Averaging (FEDAVG) has emerged as the algorithm of choice for federated learning due to its simplicity and low communication cost. However, in spite of recent research efforts, its performance is not fully understood. We obtain tight convergence rates for FEDAVG and prove that it suffers from 'client-drift' when the data is heterogeneous (non-iid), resulting in unstable and slow convergence. As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the 'client-drift' in its local updates. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (26)

Related publications (3)

Related concepts (11)

Instructional Design with Orchestration Graphs

Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.

Instructional Design with Orchestration Graphs

Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.

Learning

Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, animals, and some machines; there is also evidence for some kind of learning in certain plants. Some learning is immediate, induced by a single event (e.g. being burned by a hot stove), but much skill and knowledge accumulate from repeated experiences. The changes induced by learning often last a lifetime, and it is hard to distinguish learned material that seems to be "lost" from that which cannot be retrieved.

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

Data

In common usage and statistics, data (USˈdætə; UKˈdeɪtə) is a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data is usually organized into structures such as tables that provide additional context and meaning, and which may themselves be used as data in larger structures.

Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same functional unit, the neuron, and develop through the same learning mechanism, synaptic plasticity. It motivates the conjecture of a unifying theory to explain cortical representational learning across sensory modalities. In this thesis we present theories and computational models of learning and optimization in neural networks, postulating functional properties of synaptic plasticity that support the apparent universal learning capacity of cortical networks. In the past decades, a variety of theories and models have been proposed to describe receptive field formation in sensory areas. They include normative models such as sparse coding, and bottom-up models such as spike-timing dependent plasticity. We bring together candidate explanations by demonstrating that in fact a single principle is sufficient to explain receptive field development. First, we show that many representative models of sensory development are in fact implementing variations of a common principle: nonlinear Hebbian learning. Second, we reveal that nonlinear Hebbian learning is sufficient for receptive field formation through sensory inputs. A surprising result is that our findings are independent of specific details, and allow for robust predictions of the learned receptive fields. Thus nonlinear Hebbian learning and natural statistics can account for many aspects of receptive field formation across models and sensory modalities. The Hebbian learning theory substantiates that synaptic plasticity can be interpreted as an optimization procedure, implementing stochastic gradient descent. In stochastic gradient descent inputs arrive sequentially, as in sensory streams. However, individual data samples have very little information about the correct learning signal, and it becomes a fundamental problem to know how many samples are required for reliable synaptic changes. Through estimation theory, we develop a novel adaptive learning rate model, that adapts the magnitude of synaptic changes based on the statistics of the learning signal, enabling an optimal use of data samples. Our model has a simple implementation and demonstrates improved learning speed, making this a promising candidate for large artificial neural network applications. The model also makes predictions on how cortical plasticity may modulate synaptic plasticity for optimal learning. The optimal sampling size for reliable learning allows us to estimate optimal learning times for a given model. We apply this theory to derive analytical bounds on times for the optimization of synaptic connections. First, we show this optimization problem to have exponentially many saddle-nodes, which lead to small gradients and slow learning. Second, we show that the number of input synapses to a neuron modulates the magnitude of the initial gradient, determining the duration of learning. Our final result reveals that the learning duration increases supra-linearly with the number of synapses, suggesting an effective limit on synaptic connections and receptive field sizes in developing neural networks.

Sebastian Urban Stich, Konstantin Mishchenko

We consider distributed optimization over several devices, each sending incremental model updates to a central server. This setting is considered, for instance, in federated learning. Various schemes have been designed to compress the model updates in order to reduce the overall communication cost. However, existing methods suffer from a significant slowdown due to additional variance omega > 0 coming from the compression operator and as a result, only converge sublinearly. What is needed is a variance reduction technique for taming the variance introduced by compression. We propose the first methods that achieve linear convergence for arbitrary compression operators. For strongly convex functions with condition number kappa, distributed among n machines with a finite-sum structure, each worker having less than in components, we also (i) give analysis for the weakly convex and the non-convex cases and (ii) verify in experiments that our novel variance reduced schemes are more efficient than the baselines. Moreover, we show theoretically that as the number of devices increases, higher compression levels are possible without this affecting the overall number of communications in comparison with methods that do not perform any compression. This leads to a significant reduction in communication cost. Our general analysis allows to pick the most suitable compression for each problem, finding the rig ht balance between additional variance and communication savings. Finally, we also (iii) give analysis for arbitrary quantized updates.

Sai Praneeth Reddy Karimireddy

A traditional machine learning pipeline involves collecting massive amounts of data centrally on a server and training models to fit the data. However, increasing concerns about the privacy and security of user's data, combined with the sheer growth in the data sizes has incentivized looking beyond such traditional centralized approaches. Collaborative learning (which encompasses distributed, federated, and decentralized learning) proposes instead for a network of data holders to collaborate together to train models without transmitting any data. This new paradigm minimizes data exposure, but inherently faces some fundamental challenges. In this thesis, we bring to bear the framework of stochastic optimization to formalize and develop new algorithms for these challenges. This serves not only to develop novel solutions, but also to test the utility of the optimization lens in modern deep learning.We study three fundamental problems. Firstly, collaborative training replaces a one-time transmission of raw data with repeated rounds of communicating partially trained models. However, this quickly runs against bandwidth constraints when dealing with large models. We propose to solve this bandwidth constraint using compressed communication. Next, collaborative training leverages the computation power of the data holders directly. However, this is not as reliable as using a data center with only a subset of them available at any given time. Thus, we require new algorithms which can efficiently utilize unreliable local computation of the data holders. Finally, collaborative training allows any data holder to participate in the training process, without being able to inspect their data or local computation. This may potentially open the system to malicious or faulty agents who seek to derail the training. We develop algorithms with Byzantine robustness which are guaranteed to be resilient to such attackers.