Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Mechanochromic luminescent materials, exhibiting a change in luminescence behavior under external stimuli have emerged as one of the promising candidates for upcoming efficient OLEDs. Recently mechanochromic luminescence was reported in a donor-acceptor-donor (D-A-D) triad featuring two phenothiazine units separated by a dibenzo[a,j]phenazine motif. The triad follows different emissive routes ranging from phosphorescence to TADF based on the conformational switching of the D units. In this article, we investigate such conformation-dependent photophysical behavior of this triad through theoretical calculations. By analyzing the nature of ground state, excited state and factors determining the reverse ISC crossing rates associated with the relative orientation of the D and A units, we delineate the effect of the conformational changes on their photophysical properties. Our findings reveal that axial orientation of both the donor groups enhances the overlap between HOMO and LUMO leading to a large singlet-triplet gap (Delta EST ) which drives phosphorescence emission. On the contrary, the equatorial orientation of the donor groups minimizes Delta EST to facilitate rISC making the conformers TADF active. The role of several geometric factors affecting the photophysical properties of the conformers is also highlighted. Finally, we show how to regulate the population difference among the conformers by functionalizing the triad to harvest the maximum TADF efficiency.
Anne-Florence Raphaëlle Bitbol
Nicolas Jean Philippe Guex, Eléonore Lavanchy