FrequencyFrequency (symbol f) is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency. Frequency is measured in hertz (symbol Hz) which is equal to one event per second. Ordinary frequency is related to angular frequency (symbol ω, in radians per second) by a scaling factor of 2π. The period (symbol T) is the interval of time between events, so the period is the reciprocal of the frequency, f=1/T.
Equivalent circuitIn electrical engineering, an equivalent circuit refers to a theoretical circuit that retains all of the electrical characteristics of a given circuit. Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of the original circuit as well.
Periodic continued fractionIn mathematics, an infinite periodic continued fraction is a continued fraction that can be placed in the form where the initial block of k + 1 partial denominators is followed by a block [ak+1, ak+2,...ak+m] of partial denominators that repeats ad infinitum. For example, can be expanded to a periodic continued fraction, namely as [1,2,2,2,...]. The partial denominators {ai} can in general be any real or complex numbers. That general case is treated in the article convergence problem.
Laurent seriesIn mathematics, the Laurent series of a complex function is a representation of that function as a power series which includes terms of negative degree. It may be used to express complex functions in cases where a Taylor series expansion cannot be applied. The Laurent series was named after and first published by Pierre Alphonse Laurent in 1843. Karl Weierstrass may have discovered it first in a paper written in 1841, but it was not published until after his death.
Padé approximantIn mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series.
Dirichlet's approximation theoremIn number theory, Dirichlet's theorem on Diophantine approximation, also called Dirichlet's approximation theorem, states that for any real numbers and , with , there exist integers and such that and Here represents the integer part of . This is a fundamental result in Diophantine approximation, showing that any real number has a sequence of good rational approximations: in fact an immediate consequence is that for a given irrational α, the inequality is satisfied by infinitely many integers p and q.
Champernowne constantIn mathematics, the Champernowne constant C10 is a transcendental real constant whose decimal expansion has important properties. It is named after economist and mathematician D. G. Champernowne, who published it as an undergraduate in 1933. For base 10, the number is defined by concatenating representations of successive integers: C10 = 0.12345678910111213141516... . Champernowne constants can also be constructed in other bases, similarly, for example: C2 = 0.11011100101110111... 2 C3 = 0.12101112202122..
Configuration (geometry)In mathematics, specifically projective geometry, a configuration in the plane consists of a finite set of points, and a finite arrangement of lines, such that each point is incident to the same number of lines and each line is incident to the same number of points. Although certain specific configurations had been studied earlier (for instance by Thomas Kirkman in 1849), the formal study of configurations was first introduced by Theodor Reye in 1876, in the second edition of his book Geometrie der Lage, in the context of a discussion of Desargues' theorem.
Puiseux seriesIn mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series is a Puiseux series in the indeterminate x. Puiseux series were first introduced by Isaac Newton in 1676 and rediscovered by Victor Puiseux in 1850. The definition of a Puiseux series includes that the denominators of the exponents must be bounded. So, by reducing exponents to a common denominator n, a Puiseux series becomes a Laurent series in an nth root of the indeterminate.
Zeros and polesIn complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function (see essential singularity). Technically, a point z0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which either f or 1/f is holomorphic.