Publication

Ug-value and edge heat loss of triple glazed insulating glass units:A comparison between measured and declared values

Andreas Schueler, Anna Krammer
2021
Journal paper
Abstract

Triple glazed low-e coated insulating glass units with argon filling of five different suppliers on the European market with a declared thermal transmittance in the undisturbed centre of glass (Ug-value) of 0.6 W/m(2)K have been purchased from resellers and tested in a guarded hot plate at vertical position. The measured results showed deviations towards higher values for all 5 types. These have been analysed by recurring to the determination of the two main factors namely the gas mixture in the two cavities and the emissivity of the coated glass panes. Nondestructive measuring methods for gas mixture analysis and standardized calculation methods for the Ug-value have been used to analyse the influence of these two factors. In a further step the edge heat loss due to the spacer of the insulating glass units has been measured by using two "halves" of each glazing type with a double edge running through the middle of the measured sample. This was done following a standardized test method for the determination of the edge heat loss of Vacuum Insulation Panels (VIP). Finally, pieces of the coated glass panes were cut out of the glazing units and their emissivity measured with both an infrared spectrometer and an emissiometer. Results showed an increased emissivity value for the coated surfaces leading to higher U-g values than measured. This is partly due to the exposure to air and the possible degradation of the coating. The investigation shows non-destructive emissivity determination is needed to get more accurate in-situ emissivity values of the coatings.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Insulated glazing
Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction. Insulating glass units (IGUs) are typically manufactured with glass in thicknesses from 3 to 10 mm (1/8" to 3/8").
Glazing (window)
Glazing, which derives from the Middle English for 'glass', is a part of a wall or window, made of glass. Glazing also describes the work done by a professional "glazier". Glazing is also less commonly used to describe the insertion of ophthalmic lenses into an eyeglass frame. Common types of glazing that are used in architectural applications include clear and tinted float glass, tempered glass, and laminated glass as well as a variety of coated glasses, all of which can be glazed singly or as double, or even triple, glazing units.
Architectural glass
Architectural glass is glass that is used as a building material. It is most typically used as transparent glazing material in the building envelope, including windows in the external walls. Glass is also used for internal partitions and as an architectural feature. When used in buildings, glass is often of a safety type, which include reinforced, toughened and laminated glasses. 1226: "Broad Sheet" first produced in Sussex. 1330: "Crown glass" for art work and vessels first produced in Rouen, France.
Show more
Related publications (36)

Transparent structured conductive coating for applications in smart windows.

Jérémy Jacques Antonin Fleury

Solar radiation reaching the surface of the earth for a period of one hour contains more energy than that consumed by mankind over an entire year. Some of this solar energy is already collected by photovoltaic cells to cover the electricity needs of buildi ...
EPFL2023

Discomfort glare from daylight: Influence of transmitted color and the eye's macular pigment

Sneha Jain

Designing architectural façades that allow sufficient daylight to create visually comfortable and pleasant environments is a challenging aspect of building design as it requires to account for visual comfort and discomfort glare risks, and understand the f ...
2023

(In)visible reuse: Retrofit and refurbishment practices in the home

Ankita Singhvi

The construction sector is the world's largest consumer of raw materials, and emissions from housing and construction contribute to approximately 40% of all annual global carbon dioxide emissions. With cities racing to meet their climate targets, there is ...
2023
Show more
Related MOOCs (1)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.