Publication

Influence of Detergent and Lipid Composition on Reconstituted Membrane Proteins for Structural Studies

Mohammed Mouhib
2021
Journal paper
Abstract

Membrane proteins are frequently reconstituted in different detergents as a prerequisite to create a phospholipid environment reminiscent of their native environment. Different detergent characteristics such as their chain length and bond types could affect the structure and function of proteins. Yet, they are seldom taken into account when choosing a detergent for structural studies. Here, we explore the effect of different detergents and lipids with varying degrees of double- or single-bond composition on H-1-N-15 transverse relaxation optimized spectroscopy spectra of the outer membrane protein W (OmpW). We observed changes in nuclear magnetic resonance chemical shifts for OmpW reconstituted in micelles, bicelles, and nanodiscs, depending on their detergent/lipid composition. These results suggest that a careful evaluation of detergents is necessary, so as not to jeopardize the structure and function of the protein.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Membrane protein
Membrane proteins are common proteins that are part of, or interact with, biological membranes. Membrane proteins fall into several broad categories depending on their location. Integral membrane proteins are a permanent part of a cell membrane and can either penetrate the membrane (transmembrane) or associate with one or the other side of a membrane (integral monotopic). Peripheral membrane proteins are transiently associated with the cell membrane.
Peripheral membrane protein
Peripheral membrane proteins, or extrinsic membrane proteins, are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins.
Cell membrane
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.
Show more
Related publications (43)

Solution nuclear magnetic resonance spectroscopy of bacterial outer membrane proteins in natively excreted vesicles using engineered Escherichia coli

Mohammed Mouhib

Gaining structural information on membrane proteins in their native lipid environment is a long-standing challenge in molecular biology. Instead, it is common to employ membrane mimetics, which has been shown to affect protein structure, dynamics, and func ...
WILEY2022

Similarities and Differences among Protein Dynamics Studied by Variable Temperature Nuclear Magnetic Resonance Relaxation

David Lyndon Emsley, Jayasubba Reddy Yarava, Andrea Bertarello, Baptiste Busi, François Freymond

Understanding and describing the dynamics of proteins is one of the major challenges in biology. Here, we use multifield variable-temperature NMR longitudinal relaxation (R-1) measurements to determine the hierarchical activation energies of motions of fou ...
AMER CHEMICAL SOC2021

Characterization of Protein-Membrane Interfaces through a Synergistic Computational-Experimental Approach

Alessio Prunotto

The characterization of biological interfaces is widely recognized as one of the main challenges for modern biology. In particular, biological membranes are nowadays known to be an active environment that allows membrane proteins to perform their work and ...
EPFL2020
Show more
Related MOOCs (12)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.