Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this dissertation, we propose multiple methods to improve transfer learning for pretrained language models (PLMs). Broadly, transfer learning is a powerful technique in natural language processing, where a language model is first pre-trained on a data-r ...
Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) process consolidating parts layer by layer, from a metallic powder bed. It allows no limitation in terms of geometry and is therefore of particular interest to various industries. Metallic LP ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
Explainable AI (XAI) methods aim to describe the decision process of deep neural networks. Early XAI methods produced visual explanations, whereas more recent techniques generate multimodal explanations that include textual information and visual represent ...
We propose a novel system leveraging deep learning-based methods to predict urban traffic accidents and estimate their severity. The major challenge is the data imbalance problem in traffic accident prediction. The problem is caused by numerous zero values ...
The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our unde ...
We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this an ...
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability impr ...
We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of test-time feedback sig ...
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in co ...