Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a method for adapting neural networks to distribution shifts at test-time. In contrast to training-time robustness mechanisms that attempt to anticipate and counter the shift, we create a closed-loop system and make use of test-time feedback sig ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
In this dissertation, we propose multiple methods to improve transfer learning for pretrained language models (PLMs). Broadly, transfer learning is a powerful technique in natural language processing, where a language model is first pre-trained on a data-r ...
Explainable AI (XAI) methods aim to describe the decision process of deep neural networks. Early XAI methods produced visual explanations, whereas more recent techniques generate multimodal explanations that include textual information and visual represent ...
Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) process consolidating parts layer by layer, from a metallic powder bed. It allows no limitation in terms of geometry and is therefore of particular interest to various industries. Metallic LP ...
We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this an ...
Current machine learning models for vision are often highly specialized and limited to a single modality and task. In contrast, recent large language models exhibit a wide range of capabilities, hinting at a possibility for similarly versatile models in co ...
We propose a novel system leveraging deep learning-based methods to predict urban traffic accidents and estimate their severity. The major challenge is the data imbalance problem in traffic accident prediction. The problem is caused by numerous zero values ...
On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability impr ...
The recent advance of large language models (LLMs) demonstrates that these large-scale foundation models achieve remarkable capabilities across a wide range of language tasks and domains. The success of the statistical learning approach challenges our unde ...