Monic polynomialIn algebra, a monic polynomial is a non-zero univariate polynomial (that is, a polynomial in a single variable) in which the leading coefficient (the nonzero coefficient of highest degree) is equal to 1. That is to say, a monic polynomial is one that can be written as with Monic polynomials are widely used in algebra and number theory, since they produce many simplifications and they avoid divisions and denominators. Here are some examples. Every polynomial is associated to a unique monic polynomial.
Polynomial interpolationIn numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. Given a set of n + 1 data points , with no two the same, a polynomial function is said to interpolate the data if for each . There is always a unique such polynomial, commonly given by two explicit formulas, the Lagrange polynomials and Newton polynomials.
Square-free polynomialIn mathematics, a square-free polynomial is a polynomial defined over a field (or more generally, an integral domain) that does not have as a divisor any square of a non-constant polynomial. A univariate polynomial is square free if and only if it has no multiple root in an algebraically closed field containing its coefficients. This motivates that, in applications in physics and engineering, a square-free polynomial is commonly called a polynomial with no repeated roots.
Distribution (mathematics)Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions (weak solutions) than classical solutions, or where appropriate classical solutions may not exist.
Dirac delta functionIn mathematical physics, the Dirac delta distribution (δ distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., ) to its value at zero of its domain (), or as the weak limit of a sequence of bump functions (e.g.
Degree of a polynomialIn mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer. For a univariate polynomial, the degree of the polynomial is simply the highest exponent occurring in the polynomial. The term order has been used as a synonym of degree but, nowadays, may refer to several other concepts (see Order of a polynomial (disambiguation)).
Subshift of finite typeIn mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine. The most widely studied shift spaces are the subshifts of finite type. Let V be a finite set of n symbols (alphabet). Let X denote the set V^\Z of all bi-infinite sequences of elements of V together with the shift operator T. We endow V with the discrete topology and X with the product topology.
Function spaceIn mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space. Vector space#Function spaces Let be a vector space over a field and let be any set.
Hardy spaceIn complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz , who named them after G. H. Hardy, because of the paper . In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis.
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.